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We investigate the exact solution to the problem of calculating the s ta t ionary thermal field e x -  

ternal to a cylinder on a portion of the surface  of which the thermal flow density is constant 
and on the remaining por t ion of which the tempera ture  is constant.  

We consider  an infinitely long cylinder of radius a; on a port ion of the surface of cylinder,  namely,  
1 r [ < (~, the thermal  flow density is constant,  and on the remaining port ion of the surface  the tempera ture  
is constant,  

Upon introducing a dimensionless  thermal  flow density,  we may,  with no loss in general i ty,  write the 
boundary conditions for the problem under considerat ion in the form 

dT 
- -  1 for r = a ;  Iq~]<cc,. (1) 

Or 

T = O  for r = a ;  Iq~[>a. (2) 

Thus the problem reduces  to an integration of Laptace ' s  equation subject  to the boundary conditions 
(1) and (2). 

To solve this problem we introduce a conformal  t ransformat ion of the domain r > a with the aid of 
the function 

= ~ + in = ia - - z  - -  a (3) 
z + a  

which maps this domain into the upper halfplane of the complex g plane and, at  the same time, maps points 
of the boundary contour (z = aeiq ~) into points of the real axis,  Re c = ~ = - a l a n  q~/2. 

Through this t ransformat ion  our problem reduces to calculating the s ta t ionary thermal field in the 
halfspace ~? > 0, subject  to the following boundary conditions on the surface V = 0: 

OT 2a ~ ~z for ]~l < a tg -~ - ,  (4) 
Oq ~2 -F a ~ 

T = 0  for [~!>atg ~ (5) 
z 

Introducing the normal ized coordinates 
sin q~ 2at 

~1 - -  0 5  (Z r2 ~_ a~ .~_ 2ar COS q~ 
a tg-~- tg --2 

~l~- q ctg ~ r~a~ , 
a 2 r 2 + a  ~ + 2 a r c o s q ~  a t ~ y  

we may wri te  these conditions in the form:  
a 

2a tg - -  
o r  I _ _  2 

fo~ ILl < i,  
Ovll in,=o i + ~ t g  2 a 

2 

(6)  
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Tin,: 0 : 0  s [~xI> 1. (7) 

We then d e t e r m i n e  T in the usual  way 

T = i A (p) exp (--  yq~) cos p~dp, 
0 

thus r educ ing  the p r o b l e m  to one of solving the following s y s t e m  of in tegra l  equat ions:  

i A (p) p cos p[,dp = f (~) for ILl< 1, 
0 

(8) 

(9) 

w h e r e  

i A (p) cos p~dp = 0 for ]~l > 1, 
0 

f (~) 
2a tg 2 -  

1 + ;~ tg 2 . ~  
2 

(10) 

The  so lu t ion  of a s y s t e m  of this f o rm  is deduced in [1] and m a y  be e x p r e s s e d  by the fo rmula  
1 

A (p) = J", (t) d o (pt) dr, 
0 

(11) 

w h e r e  
t 

0 

F o r  the fo rm  of f(~l) given above ,  ~o(;l) = - 2 a a r e t a n  (~l tan a/2), and for  the function r (t) we find, 
a f t e r  i n t eg ra t ing  and s impl i fy ing ,  

c, t (12) * ( 0 = - 2 a t g T , /  " " 
. 1 - } -  t ~ t g  ~ a I /  2 

Subst i tu t ing this e x p r e s s i o n  into Eq. (11), and a f t e r  that ,  into Eq. (8), and in te rchang ing  o r d e r s  of  
in tegra t ion ,  we obtain 

1 tdt i a S V  ~z Jo(pt)exp(--P~h)c~ T = - - 2 a t g  ~ 1 + t  2tg 2 ~ -  

= - - V 2 a t g  T t 
0 I(t" + ~ - -  ~)z + 4~] ~l~] 1 + t ~ tg 2 

tg "2t~ ~ + 2513~ Z 72 tg~ ~ + ~,tg2 T + 6 v2 g 2 
= - -  V2a In _ _  (13) 

1/13] tg 2 a a ? tg - -~ + ~ltg 2 -~- + 6 t g -2 -  F T -]- 28~1 - -  2 2 ~ 

2 2 2  2 2 ~ 1 = 2 ~ ;  ~ 2 : 1  + ~ l ~ - - ~ + V ' ( 1  +~] l - -~i )  + 4 ~ h ;  

w h e r e  

? :  2~pl~; 8 :  l + ( [ ~ - - n ~ ) t g  2 a . 
2 

F r o m  the genera l  f o rmu la  obtained i t  fol lows,  in p a r t i c u l a r ,  that  

/ T- ] = + 1 . (14) q~ 
1 + tg 2 2 

F r o m  this we see  that  when r ~ ~ ( i .e . ,  when ~?i = 0; ~l ~ 1) the value  o f t  Jr=a tends to z e r o ,  i . e . ,  
the t e m p e r a t u r e  d i s t r ibu t ion  a t  the boundary ,  which we have obta ined,  goes o v e r  cont inuously  into the given 

t e m p e r a t u r e .  
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For  other typical par t icu lar  cases  we have 

2 T , T 
T l ~ = 0 =  - -  V-2a I n , 0 5 )  

Tl,== = --~. ga In 2 T + ,r  ~- - '~ ,  § - - + ( r §  , \ r - -  a J , (16) 

r § 2 4 7  
r--a r--a~ 

Tr_~=2; -2alncos a 2 (17) 

Thus we have a complete solution of our problem in closed form.  

We note, in conclusion,  that in accordance  with the method of success ive  approximations presented 
in [1], the express ion that we have obtained for T is a f i rs t  approximation for the calculation of convective 
hea t - t r ans fe r  conditions on the surface  r = a; I q~ I < ~. Moreover ,  by vir tue of known analogies,  the solu-  
tion we have obtained can be used to calculate an a r b i t r a r y  s ta t ionary potential field external to a cylinder 
subject  to corresponding boundary conditions on its surface.  

T 

aT/artr= a 
r , q )  

z , ~  
~ , ~  

U~X 

A(p), r (t), q~(u), f(~ ) 

Jo 

N O T A T I O N  

is the reduced tempera ture ;  
is the dimensionless heat-flux density on the cyl inder  surface;  
a re  the polar  coordinates;  
are the 

are the 

are the 

are the 

are the 

are the 

are the 

are the 

pa r ame te r s  of design model ; 
complex var iables ;  
Car tes ian  coordinates in the ref lected plane; 
fixed coordinates ; 
var iables  of integration; 
auxil iary functions; 
p a r a m e t e r s ;  
cylindrical  functions. 
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